Dimensional Analysis
3 Dozen eggs equals how many eggs?
Equality 1 dozen items $=12$ items
Road map

Conversion factor expressed as a ratio of 2 units $\frac{1 \text { dozen }}{12 \text { eggs }}$ or $\frac{12 \text { eggs }}{1 \text { dozen }}$

Equality expressed as a mathematical equality 1 dozen $=12$ eggs

How many second are there in 3.7 hours? Equalities

$$
\begin{aligned}
& 1 \text { min }=60 \text { seconds } \\
& 1 \text { hour }=60 \text { min }
\end{aligned}
$$

Road map
Given

$$
\frac{3.7 \times 60 \times 60}{1 \times 1}=13,320 \text { seconds }
$$

Sig figs

$$
\begin{aligned}
& \text { 2SF } \begin{array}{l}
\text { def } \\
3.7 \text { hours } \times \frac{60 \text { min }}{1 \text { hours }} \times \frac{\text { def }}{60 \text { seconds }} \begin{array}{l}
1 \text { min }
\end{array}=\frac{13 / 320 \text { seconds }}{} \\
\\
>5 \uparrow \\
<5 \downarrow
\end{array} \\
& =\left\lvert\, \begin{array}{l}
13,000 \text { seconds } \\
1.3 \times 10^{4} \text { seconds }
\end{array}\right.
\end{aligned}
$$

Steps for problem Solving
(1) parse the problem

- identify Given

Desired equalities
(2) Develope a roan map

Given $\longrightarrow \longrightarrow \longrightarrow$ Desired
Some equalities must be memorized SI system

Kilo $1 \mathrm{~km}=1000 \mathrm{~m}$
Cent $1 \mathrm{~m}=100 \mathrm{~cm}$
mill $1 \mathrm{~m}=1000 \mathrm{~mm}$
Micro $1 \times 10^{-6} \mathrm{~m}=1 \mu \mathrm{~m}$

$$
1,000,000 \mathrm{\mu m}=1 \mathrm{~m}
$$

3 key Conversion factors (equalities)

(3) write coot the problem in dimensional analysis format

$$
\text { Given } \times \longrightarrow \times \ldots=\text { Desired }
$$

(4) Analyse Sig figs
(5) Round \& Box in answer

Desired Given
How many Seconds are in 57.7 years?

$$
\text { years } \xrightarrow{(1)} \text { days } \xrightarrow{(2)} \text { hours } \xrightarrow{(3)} \min \xrightarrow{(4)} \text { seconds }
$$

Equalities

$$
\text { tyear }=12 \text { months }
$$

(1) 1 year $=365$ days
(2) 1 days $=24$ hours
(3) 1 hour $=60 \mathrm{~min}$
(4) $1 \mathrm{~mm}=60 \mathrm{sec}$

$$
\frac{51.7 \times 365 \times 24 \times 60 \times 60}{1 \times 1 \times 1 \times 1}=1,630,411,200 \text { seconds }
$$

1630000000 second

$$
1.63 \times 10^{9} \text { seconds }
$$

The volume of blood plasma in adults is 3.1 L . Equality
The density of plasma is $1.03 \mathrm{~g} / \mathrm{cm}^{3}$. How many pounds of plasma are in the average adult body?

Equality
(1) $1.03 \mathrm{~g}=1 \mathrm{~cm}^{3}$ Density (mass to Volume Conversion factor) memorized
(2) $453.6 \mathrm{~g}=116$
(3) $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
(4) $I L=1000 \mathrm{~mL}$

$\xrightarrow{\sim} 1 \times 10^{-3} \mathrm{~L}=1 \mathrm{~mL}$
Road Map

$\begin{gathered}\text { SF } \\ 3.14 \times \frac{\text { def }}{1000 \mathrm{~m} / \mathrm{L}} \\ 1 \mathrm{~L}\end{gathered} \frac{1 \mathrm{cus}}{1 \mathrm{~m} / \mathrm{L}} \times \frac{1.03 \mathrm{~g}}{1 \mathrm{~g} / \mathrm{m}^{3}} \times \frac{1 \mathrm{Ibs}}{453.6, \mathrm{~g}}=1 \mathrm{ss}$

$$
\begin{aligned}
& \frac{3.1 \times 1000 \times N \times 1.03 \times 1}{1 \times 1 \times N \times 453.6} \\
& \frac{3.1 \times 1000 \times 1.03}{453.6}=3.1 \times 1000 \times 1.03 \times \frac{1}{453.6} \\
& =3.1 \times 1000 \times 1.03 \div 453.6=7.03924162257 \mathrm{lbs} \\
& \xrightarrow{\longrightarrow} 9 \mathrm{lbs}
\end{aligned}
$$

Rounding
Round each of the following to 3 sig figs Start at $1^{\text {st }}$ non Zero value \& wove to right

$$
\begin{array}{ll}
57.0297 \mathrm{~L} & 57.0 \mathrm{~L} \\
203 \\
2,592 \mathrm{~mm} & 104 \mathrm{~mm} \\
2,59673 \mathrm{sec} & 2,400,000 \mathrm{sec} \text { or } 2.40 \times 10^{6} \mathrm{sec} \\
0.000670 .29 \mathrm{~m} & 0.000670 \mathrm{in} \text { or } 6.70 \times 10^{-4} \mathrm{~m}
\end{array}
$$

Rules for $x \div$
Round to Smallest number of $S F$ in problem

Rounding answer to match the piece of data with largest uncertainty
\Rightarrow smallest \# of sig figs

Rules for t
Rounding is done by place value.

Rounding answer to match the piece of data with the bigest uncertainty \Longrightarrow gratest uncertainty by place value

$$
\begin{gathered}
\times \div \frac{d e f}{4} \begin{array}{c}
2 \mathrm{sf} \\
6.732 \mathrm{~s} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{3.7 \mathrm{~km}}{1 \mathrm{~min}}=2 \mathrm{sF} \\
\pm \\
3.62 \mathrm{~m} 3 \pm 0.01 \\
102.0 \mathrm{~m} 4 \pm 0 . \mathrm{K} \\
0.006 \mathrm{ml} \pm 0.001 \\
+\quad 50.32 \mathrm{~m} 4 \pm 0.01 \\
\frac{155.946 \mathrm{~m}}{155} \\
155.9 \mathrm{~m}
\end{array}
\end{gathered}
$$

